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Short Communication

Hypervirial Theorems and Symmetry

Saul T. Epstein

Physics Department, University of Wisconsin, Madison, Wisconsin, USA 53706

It is pointed out that to ensure that an optimal variational wave function ¢
having a certain symmetry satisfies the hypervirial theorem for W, it is sufficient
that iSW4, where S is the projector onto the symmetry type in question, be a
possible variation of . Application is made to the tensor hypervirial theorem
for atoms.
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An optimal variational wave function satisfies
(8¢, (H — EY) + (b, (H — E)8) = 0. )

The usually invoked condition, which ensures that it also satisfies the hypervirial
theorem [1]

(&, (HW — WH)}) = 0 @
for a Hermitian operator W, is then that [2]
iWis 3

be a possible 8. It is the purpose of this note to draw attention to the fact that this
condition may well be in conflict with the symmetry properties of ¢, and to replace
it by another condition which does not have this defect.

More precisely, it can happen that /Wy does not have the symmetry of ¢ and so
for this reason alone, may not be a possible 8.2 At one extreme, if iWi itself has a
definite symmetry, by hypothesis different from that of ¢, then this is no problem

1 We say “may” because this depends on the nature of the set of trial functions.
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since (2) is then satisfied simply for reasons of symmetry.2 However, as we will see
by example below, it is not always the case that ;Wi has a definite symmetry.

Thus we would like a sufficient condition which respects the symmetry of #, and
indeed having stated the problem its solution is almost self-evident. Namely if S
(which commutes with H) is the projector onto the symmetry type in question,
then it is easy to show that it is also sufficient that

ISWip, 4
which does have the same symmetry as i, be a possible 8.

If S and W commute so that (4) has the same symmetry as ¢ then, since Sy = i,
(4) is the same as (3). If at the other extreme, i Wi has a definite symmetry different
from that of i, then since SWi = 0, we recover the result that in such cases no
special considerations beyond symmetry are needed to ensure (2). To give an inter-
mediate example, consider an N-electron system with W = f(1), i.e. W depends
only on the coordinates of electron 1. Then (W3 is not antisymmetric if i is, and
hence would not usually be a possible 8. One then readily finds that (4), with S
the antisymmetrizer, is proportional to

(i 3 s0)s | )

and hence we have derived the (obvious given that ¢ is antisymmetric) result that
the hypervirial theorem for f(1) will be satisfied if that for 3., f(s) is satisfied.

Our remaining examples are concerned with the tensor virial theorem [4, 5] for
atoms. Here we deal with the set of operators

Wiy = Zl (P$)x(s) + x()pils)),  Li=xp2 (6)

If we suppose that i is an eigenfunction of L,, the z-component of angular momen-
tum then one readily finds that symmetry alone ensures that the off-diagonal
theorems are satisfied, and that the W,, theorem will be satisfied if the W,
theorem is. Thus if we have an eigenfunction of L, then all theorems will be satisfied
if the W,, theorem and the ordinary virial theorem (the W, + W,, + W, =
V theorem) are satisfied.

Now to ensure that (3), with W = ¥, is a possible variation it is known [6] that
one should allow for a uniform scaling of all electronic coordinates, while to ensure
that (3) with W = W, be a possible variation one should [4] also allow for an
extrascaling of the z-coordinates. Further clearly neither of these scalings will upset
the property of being an eigenfunction of L, since the former leaves all angles
unchanged while the latter leaves all azimuthal angles unchanged. However, the
latter scaling obviously does conflict with having an eigenfunction of L? and so if
one wants also to have an eigenfunction of L? one must turn to (4), with S the

2 Examples can be found on pages 96-101 of {3].
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projector onto the eigenvalue of L2, and with W = W,, in order to learn what to do.
If one does this for a single electron in a central field

= R(r)Yin Q)

one readily finds that, to within an irrelevant additive multiple of , iSW..4 is
proportional to

dR
r & A, ®

i.e. is proportional to iVi, and so one has the result that if the ordinary virial
theorem is satisfied, then all the tensor theorems will be satisfied.

For the even parity M = 0 P-states® of helium [7]
= (X1Va — XoY)F(r1, Fa, ¥y Fs) %

one again finds after a bit of straight-forward “Clebsch-Gordanry’ that iSW,.4
is essentially the same as iV, so again if the ordinary virial theorem is satisfied
then the tensor theorems will also be satisfied.

Finally, we have looked at the odd parity M = 0 P-states of helium, but have not
been able to complete the analysis. Here [7]

g = 2, F(ry, ro, #1o8y) + ZF(rg, 11, 110ry) = 2, F + z,F (10)
and one finds that
oF oF oF (rior)0F  , OF
3, ory tr Orqg + 4o ory-ro t+2 r, on T O(ryry) (1n

should be a possible 8F. The first three terms can be realized by a simple scaling
(different for r, and r,), however, we have thus far been unable to see how to
implement the last two terms.*
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8 Evidently for an atomic S-state, symmetry alone will ensure the tensor theorem if the ordinary

theorem is satisfied.

* Equivalently we have not been able to evaluate (exp iaSW,,S)¥ where q is a real constant.
It is perhaps of interest to note, however, that if F = F(ry, rg(1 — 2 cos? 6,)) then the second
line vanishes identically.



